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Simplified transfer matrix approach in the two-dimensional Ising model
with various boundary conditions
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A recent simplified transfer matrix solution of the two-dimensional Ising model on a square lattice with
periodic boundary conditions is generalized to periodic-antiperiodic, antiperiodic-periodic, and antiperiodic-
antiperiodic boundary conditions. It is suggested to employ linear combinations of the resulting partition
functions to investigate finite-size scaling. An exact relation of such a combination to the partition function
corresponding to Brascamp-Kunz boundary conditions is found.
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Recently, a solution of the two-dimensional Ising mod
on a square lattice with periodic boundary conditions w
presented@1#, which simplifies Kaufman’s version@2# of On-
sager’s solution@3# without requiring sophisticated math
ematics. Here we point out how the method easily gene
izes also to the cases of periodic-antiperiodic, antiperiod
periodic, and antiperiodic-antiperiodic boundary conditio
which were recently solved using a Grassmann path inte
approach@4#. The motivation for varying the boundary con
ditions originates in the investigation of finite-size scali
~FSS! @5–7#. The analytic properties of FSS are of intere
when trying to describe critical properties of models who
exact solution is unknown. For the analysis of FSS in so
able models it is very helpful if the exact partition functio
can be written as a product rather than as a sum@6,7#, as is
the case with Brascamp-Kunz~BK! boundary conditions@8#.
Here we exhibit linear combinations of partition functio
with varying boundary conditions that have this property a
may be used for such an analysis. For one of these lin
combinations we find an exact relation to the partition fun
tion for BK boundary conditions.

We follow the notation in@1#. Define the energyE of the
two-dimensional Ising model on a square lattice withm3n
sites by

2bE5a(
n51

n S sasmns1n1 (
m51

m21

smnsm11,nD
1b (

m51

m S sbsmnsm11 (
n51

n21

smnsm,n11D , ~1!

where we assumea,b.0 as in@1# and where the spin vari
ablessmn can assume the values61. (sa ,sb)5(1,1) corre-
sponds to periodic boundary conditions in both directio
~pp!, as investigated in@1–3#. (sa ,sb)5(1,21), (21,1),
and (21,21) correspond to periodic-antiperiodic~pa!,
antiperiodic-periodic~ap!, and antiperiodic-antiperiodic~aa!
boundary conditions, respectively. The partition function
defined by
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Zab
(m,n)~a,b!5 (

smn561
exp~2bE!, ~2!

whereab may be pp, pa, ap, or aa. After defining 2n32n

matricesXn ~and analogouslyYn andZn) by

~3!

wheresx is a Pauli matrix and1 is the 232 unit matrix, we
may write the partition function as

Zab
(m,n)~a,b!5@2 sinh~2a!#mn/2Tr~QVm!, ~4!

where Q51 ~now the 2n32n unit matrix! and Q5UX
[X1X2•••Xn for periodic and antiperiodic boundary cond
tions in thea direction, respectively, and where

V5Va/2VbVa/2 ~5!

with

Va/25 )
n51

n

exp~ āXn/2!, ~6!

whereā is defined by sinh 2asinh 2ā51 as in@1#, and

Vb5exp~sbbZnZ1!)
n51

n21

exp~bZnZn11! ~7!

with sb51 and sb521 for periodic and antiperiodic
boundary conditions in theb direction, respectively. With the
same set of matrices

Jab
6 5P6Jab , P6[ 1

2 ~16UX! ~8!

as in @1#, where

Jab52
i

4
@Ga ,Gb#, ~9!

G2n215X1•••Xn21Zn , ~10!

G2n5X1•••Xn21Yn , ~11!

the partition function may be rewritten as
©2002 The American Physical Society03-1
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Zab
(m,n)~a,b!5@2 sinh~2a!#mn/2Tr~QaVb

m! ~12!

with

Q{
p
a} 5P16P2 , ~13!

Vb5Vb
1Vb

25Vb
2Vb

1 , ~14!

Vb
65Va/2

6 Vbb
6 Va/2

6 , ~15!

Va/2
6 5 )

n51

n

exp~ āJ2n,2n21
6 !, ~16!

Vbp
6 5exp~72bJ1,2n

6 !)
n51

n21

exp~2bJ2n11,2n
6 !, ~17!

Vba
6 5exp~62bJ1,2n

6 !)
n51

n21

exp~2bJ2n11,2n
6 !. ~18!

From here on it is straightforward to follow the argumen
given in @1# to compute the partition function in terms of th
gk defined by

coshgk5cosh 2ā cosh 2b2cos
pk

n
sinh 2ā sinh 2b ~19!

with the understanding thatgk.0 for 1<k<n and withg0

52(ā2b). It turns out that antiperiodic boundary condition
in the b direction lead to an exchange ofgk with even and
odd indices, while antiperiodic boundary conditions in thea
direction lead to a sign change of half of the terms in
partition function, see Eqs.~32! and ~33! below.

Define

See
(m,n)~a,b!5(

e
expS m

2 (
n51

n

~6 !g2n22D , ~20!

Seo
(m,n)~a,b!5(

e
expS m

2 (
n51

n

~6 !g2n21D , ~21!

Soe
(m,n)~a,b!5(

o
expS m

2 (
n51

n

~6 !g2n22D , ~22!

Soo
(m,n)~a,b!5(

o
expS m

2 (
n51

n

~6 !g2n21D , ~23!

where the first index inSxy and the index under the summ
tion sign refer to all combinations in the sum in the expon
that have an even/odd number of minus signs and the se
index of Sxy refers to even/odd indices of thegk . Define
also

Co
(m,n)~a,b!5@2 sinh~2a!#mn/2)

k51

n F2 coshS m

2
g2k21D G ,

~24!
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So
(m,n)~a,b!5@2 sinh~2a!#mn/2)

k51

n F2 sinhS m

2
g2k21D G ,

~25!

Ce
(m,n)~a,b!5@2 sinh~2a!#mn/2)

k51

n F2 coshS m

2
g2k22D G ,

~26!

Se
(m,n)~a,b!5@2 sinh~2a!#mn/2)

k51

n F2 sinhS m

2
g2k22D G ,

~27!

and note that

So
(2m,n)~a,b!5So

(m,n)~a,b!Co
(m,n)~a,b!, ~28!

Se
(2m,n)~a,b!5Se

(m,n)~a,b!Ce
(m,n)~a,b!. ~29!

Then, omitting upper indices (m,n) and arguments (a,b) for
brevity, we have for the various cases

Zpp5@2 sinh~2a!#mn/2~Seo1Soe!

5 1
2 ~Co1So1Ce2Se!, ~30!

Zpa5@2 sinh~2a!#mn/2~See1Soo!

5 1
2 ~Co2So1Ce1Se!, ~31!

Zap5@2 sinh~2a!#mn/2~Seo2Soe!

5 1
2 ~Co1So2Ce1Se!, ~32!

Zaa5@2 sinh~2a!#mn/2~See2Soo!

5 1
2 ~2Co1So1Ce1Se!. ~33!

The result forZpp is the one found in@1# and, observing the
different sign convention forg0, in @2#.

In @6,7#, FSS was investigated with BK boundary cond
tions @8# so that the partition function has a product structu
which facilitates the subsequent analysis of the approac
the critical point in the thermodynamic limit. The partitio
functions above do not have such a product structure in c
trast to their linear combinationsCo , So , Ce, andSe. Ex-
cept forSe, these combinations are positive for any tempe
ture and may be viewed as partition functions belonging
models with possibly nonlocal boundary conditions. Ev
though these boundary conditions may in general not be
ticularly physical, the quantitiesCo , So , andCe may be used
as a mathematical tool to investigate the approach to criti
ity in the same way as the partition function of the mod
with BK boundary conditions.

Se does not qualify for such an approach. Since the
boundary conditions cause a lower ground-state energy
the other three boundary conditions considered here,Se be-
comes negative for sufficiently low temperatures sinceZpp
enters with a minus sign.Se has another interesting propert
though: Due to the sign change ofg0 at the critical tempera-
3-2
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ture of the thermodynamic limit~i.e., where ā5b), Se

changes its sign at the critical temperature for any sizem
3n of the square lattice.

The quantities~24!–~27! are the same as in@5#, even
though they have a different appearance. In our notation,
expressions in@5# read

Co
(m,n)~a,b!52mn)

p50

m21

)
q50

n21 Fcosh~2a!cosh~2b!

2cos
~2p11!p

m
sinh~2a!

2cos
~2q11!p

n
sinh~2b!G1/2

, ~34!

So
(m,n)~a,b!52mn)

p50

m21

)
q50

n21 Fcosh~2a!cosh~2b!

2cos
2pp

m
sinh~2a!

2cos
~2q11!p

n
sinh~2b!G1/2

, ~35!

Ce
(m,n)~a,b!52mn)

p50

m21

)
q50

n21 Fcosh~2a!cosh~2b!

2cos
~2p11!p

m
sinh~2a!

2cos
2qp

n
sinh~2b!G1/2

, ~36!

Se
(m,n)~a,b!5sgn„12sinh~2a!sinh~2b!…

32mn)
p50

m21

)
q50

n21 Fcosh~2a!cosh~2b!

2cos
2pp

m
sinh~2a!

2cos
2qp

n
sinh~2b!G1/2

. ~37!

While these expressions involve a double product instea
just a single product as in Eqs.~24!–~27!, they have the
advantage thatCo andSe are symmetric under the exchang
(a,m)↔(b,n) and that the only asymmetry ofCe and So
under this exchange originates in the boundary conditi
and not in the mathematical treatment.

While Wu et al. @4# use the Grassmannian integral a
proach to map the problem onto a free fermion system,
method employed in this work is close in spirit to Kaufman
solution @2#, but avoiding some complications encounter
there, as detailed in@1#. While the Grassmannian metho
may be viewed as more elegant, our method is accessib
a less sophisticated mathematical level. It is also interes
05710
he
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s

e
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g

to note the very different appearance of the solutions~24!–
~27! and ~34!–~37!. It would be interesting to see if ou
method can be generalized to cases that so far have
solved only using the Grassmannian integral approach, s
as various boundary conditions on plane-triangular and h
eycomb lattices@5#, or others.

Brascamp and Kunz@8# gave a solution for a two-
dimensional Ising model on a square lattice with (m12)
3n sites with periodic boundary conditions in theb direction
and fixed boundary conditions in thea direction. If k enu-
merates the sites in thea direction (0<k<m11), then the
spins atk50 are fixed at11, while the spins atk5m11
are fixed to alternate between21 and 11, so n must be
even. The resulting partition function was determined to
@8#

ZBK
(m,n)~a,b!52mn)

p51

m

)
q51

n/2 Fcosh~2a!cosh~2b!

2cos
pp

m11
sinh~2a!

2cos
~2q21!p

n
sinh~2b!G . ~38!

Using Eqs.~28! and~34!–~36!, we can establish the connec
tion

So
„2(m11),n…~a,b!5So

(2,n)~a,b!ZBK
(m,n)~a,b!2

5Ce
(n,2)~b,a!ZBK

(m,n)~a,b!2, ~39!

where theSo may be factorized according to Eq.~28! and
Ce

(n,2)(b,a) is most easily evaluated using Eq.~26!.
Equation~39! generalizes Eq.~10! in @7# to the casea

Þb. It would be interesting to understand Eq.~39! without
having to resort to the solutions of the models. Then it m
also be possible to relateCo , So , Ce, and Se to yet other
physical boundary conditions.

Investigation of FSS forCo , So , and Ce is beyond the
scope of this paper. Let us state, however, one interes
result that can be read off immediately from Eq.~34!. If a
5b and we definez5sinh 2a, the zeroszpq of Co in the
complex plane are given byzpq5exp(iapq) with

apq5arccosF1

2 S cos
~2p11!p

m
1cos

~2q11!p

n D G , ~40!

and the zero nearest to the real axes is found forp5q50.
For m5n, this zero scales as

a005
p

n
~41!

without any corrections as opposed to the case of BK bou
ary conditions@6,7#. It remains to be investigated if simpli
fications may also be achieved for the FSS of other quant
and if simplifying combinations of partition functions ca
also be defined for models whose exact solution is unav
able, e.g., by the use of symmetry arguments.
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