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Simplified transfer matrix approach in the two-dimensional Ising model
with various boundary conditions
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A recent simplified transfer matrix solution of the two-dimensional Ising model on a square lattice with
periodic boundary conditions is generalized to periodic-antiperiodic, antiperiodic-periodic, and antiperiodic-
antiperiodic boundary conditions. It is suggested to employ linear combinations of the resulting partition
functions to investigate finite-size scaling. An exact relation of such a combination to the partition function
corresponding to Brascamp-Kunz boundary conditions is found.
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Recently, a solution of the two-dimensional Ising model
on a square lattice with periodic boundary conditions was Z{%"M(a,b)= E+ exp(— BE), 2
presented1], which simplifies Kaufman'’s versigf2] of On- Sur=+1
Sager’S SO|uti0n[3] W|th0ut requiring Sophisticated math' Whereaﬁ may be pp, pa, ap, or aa. After deﬁnin@>22n
ematics. Here we point out how the method easily generalmatricesx, (and analogously’, andz,) by
izes also to the cases of periodic-antiperiodic, antiperiodic-
periodic, and antiperiodic-antiperiodic boundary conditions, X,=1®---®10,®1®---®1, 3)
which were recently solved using a Grassmann path integral T -
approacH4]. The motivation for varying the boundary con-
ditions originates in the investigation of finite-size scalingwhereg, is a Pauli matrix and. is the 2x 2 unit matrix, we
(FSS [5-7]. The analytic properties of FSS are of interestmay write the partition function as
when trying to describe critical properties of models whose
exact solution is unknown. For the analysis of FSS in solv- Z(%"(a,b)=[2 sini(2a)™"2Tr(QV™), (4)
able models it is very helpful if the exact partition function _ ]
can be written as a product rather than as a gy, as is Where Q=1 (now the 2'’<2" unit matrix and Q=Uy
the case with Brascamp-KuriBK) boundary conditionf8]. ~ =X1Xz- - - X, for periodic and antiperiodic boundary condi-
Here we exhibit linear combinations of partition functions tions in thea direction, respectively, and where
with varying boundary conditions that have this property and

may be used for such an analysis. For one of these linear V=VarVoVar ®)
combinations we find an exact relation to the partition func-yith
tion for BK boundary conditions.
We follow the notation iff1]. Define the energ¥ of the N _
two-dimensional Ising model on a square lattice wittx n Vap= Hl exp(ax,/2), (6)
sites by !
wherea is defined by sinh&sinh 22=1 as in[1], and
n m—1
n-1
— ﬂE: a]zl ( 0 aSmyS1, T ME:]_ SuvSu+ l,V) Vb: exq Ubbznzl) 1:[1 eXF( bZVZV+1) (7)
m n—-1
+b LS. S 1+ S,.Su i1l 1 with o,=1 and o,=—1 for periodic and antiperiodic
,;1 ( bun=ul ;1 myr +1) @) boundary conditions in thle direction, respectively. With the
same set of matrices
where we assuma,b>0 as in[1] and where the spin vari- JiB:Pi\]aB, P*=3(1+Uy) 8

abless,, can assume the valuesl. (o,,0,)=(1,1) corre- _

sponds to periodic boundary conditions in both directionsas in[1], where

(pp), as investigated in1-3|. (o,,0,)=(1,—1), (—1,1), i

and_ (—. 1- 1) _cor.respond to perlqdlq—ant|per|9d|g3a), Jap=—7[To.Tgl, (9)
antiperiodic-periodidap), and antiperiodic-antiperiodi@a) 4

boundary conditions, respectively. The partition function is

defined by Pap1=Xy--X,4Z,, (10
FZV:XI' . 'XV*lYV’ (11)
*Email address: ka@physik.fu-berlin.de the partition function may be rewritten as
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Z{%"(a,b) =[2 sint(2a)™"2Tr(Q, V) (12 noT m
g Si"(a,b)=[2 sinh2a)]™"?[[ |2 sinl‘(gm-l”
with k=11 25
Qi =P.xP_, (13 N
m
cMmM(a,b)=[2 sinh(2a)]™"2 2c03?6— ~ ”
Vy=VIVE=V3VE 14 & (@b)=[2 sinh2a))™ ] | > Vok-2
(26)
V; - V;ZV&V;Z y (15) n r
m
n S™M(a,b)=[2 sini2a)1™?[] |2 sinl‘(EyZKZ) }
+ ot k=1
Var= 1;[1 expalz, 2,-1), (16) ) (27)
n—1 and note that
Vip= exp(+2bJ£m)£[l exp2bdy, 12,),  (17) SE™M(a,b)=S™M(a,b)C™M(a,b), (28)
n-t SPMM(a,b)=SM"(a,b)C{™(a,b). (29)

Via=exp( =2b35,) [ exp2bd;,,15). (18
vt Then, omitting upper indicesr{,n) and argumentsa,b) for

From here on it is straightforward to follow the argumentsbrev'ty’ we have for the various cases

given in[1] to compute the partition function in terms of the B . mn2
i defined by Zpp=[2 sinh(2a) " (2 eot 2 0e)
= %(Co+ So+ Ce_ Se)a (30)

_ Tk _
coshy,=cosh 2a cosh b—cos—sinh 2asinh 2b (19 ) m2
n Zpa:[2 sinf(2a)] (Zeet 200

with the understanding that,>0 for 1<k=n and with y, =3(Co=Sp+Cet+Sy), (3D
=2(a—h). It turns out that antiperiodic boundary conditions ) 2

in the b direction lead to an exchange ¢f, with even and Zop=[2 sin(2a) ™" (2 e0— 200

odd indices, while antiperiodic boundary conditions in ¢he —1(Cy+ Sy~ Cot Sy 32)

direction lead to a sign change of half of the terms in the

artition function, see Eq$32) and(33) below. :
P Define 4432 (33 Zaa=[2 S|nr(2a)]m”’2(28e—200)

=3(—Co+Sy+Cet+Sy. (33

sEP@b)=2 e 5 2 (£)vz-2), (20

) The result forZ,, is the one found i1] and, observing the
different sign convention fory,, in [2].
In [6,7], FSS was investigated with BK boundary condi-
) (21)  tions[8] so that the partition function has a product structure

e v=1 which facilitates the subsequent analysis of the approach to
the critical point in the thermodynamic limit. The partition
n . .
m E 22 functions above do not have such a product structure in con-
2 = *)Y2-2], (22 trast to their linear combinationS,, S,, Ce, andS,. Ex-

cept forS,, these combinations are positive for any tempera-
m ture and may be viewed as partition functions belonging to
- 2 )yzy_l), (23)  models with possibly nonlocal boundary conditions. Even
2 though these boundary conditions may in general not be par-
. i , ticularly physical, the quantitieS,, S,, andC, may be used
where the first index i, and the index under the summa- »q 5 nathematical tool to mvestc:gatoe the approach to critical-
tion sign refer to all combinations in the sum in the exponent,, in the same way as the partition function of the model
that have an even/odd number of minus signs and the secong, gk boundary conditions.
index of 2, refers to even/odd indices of thg . Define s, does not qualify for such an approach. Since the pp
also boundary conditions cause a lower ground-state energy than
the other three boundary conditions considered h&rde-
2 COSVETVZk 1” comes negative for sufficiently low temperatures sigg
2 enters with a minus sigrs, has another interesting property,
(24)  though: Due to the sign change g at the critical tempera-

3MM(a,b)=>, ex

ci™M(a,b)=[2 sinr(2a)]m“’2k[[l
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ture of the thermodynamic limiti.e., wherea=b), S, (0 note the very different appearance of the solutit¥—

changes its sign at the critical temperature for any size (27) and (34)~(37). It W(.)u'd be interesting to see if our

xn of the square lattice method can bg generalized to cases that so far have been
The quantities(24)— (2'7) are the same as if5], even solved only using the Grassmannian integral approach, such

though they have a different appearance. In our notation, th@s various boundary conditions on plane-triangular and hon-
expressions ifi5] read eycomb lattice$5], or others.
Brascamp and KunZ8] gave a solution for a two-

m-1n-1 dimensional Ising model on a square lattice witin+2)
c™M(a,b)= 2mnH H cosh2a)cosh2b) X n sites with periodic boundary conditions in thelirection
=0 g=0 and fixed boundary conditions in thedirection. If k enu-
(2p+1) 7 merates the sites in thedirection (Osk=m+1), then the
—cos———sinh(2a) spins atk=0 are fixed at+1, while the spins ak=m+1
m are fixed to alternate betweenl and +1, son must be
(2q+1)m 112 even. The resulting partition function was determined to be
— cosTsinr(Zb)} , (34 [8]
m n/2
m-1n-1 zmM(a,b)= 2’“”H H cost{2a)cosh2b)
s™M(a,by=2""T] [ |cosh2a)cosh2b)
p=0 gq=0
2pm —cosp—smr(Za)
—cosTsmr(Za) m+1
o (20—1)m
(29+1)7 . —cos———sinh(2h) |. (39
—cosTsmr(Zb) , (35) n
Using Eqgs.(28) and(34)—(36), we can establish the connec-
m—-1n-1 tion
cmM(a,b)=2m" cosh{2a)cosh2b
e (ab) pﬂo qﬂo 128)cositzb) SEMEDN(3 b)=52N(a,b)zM"(a,b)?
(2p+ )7 =Cc"(b,a)zihV(a,b)?, (39

—cosTsmHZa

) 1o where theS, may be factorized according to E(28) and
qm c(™(b,a) is most easily evaluated using E@6)
—C0S— 2b)| 36 e - 4 ; '
co n Sinf( )} (36 Equation(39) generalizes Eq(10) in [7] to the casea
#b. It would be interesting to understand E&9) without
S{™"(a,b)=sgn(1—sinh(2a)sinh2b)) having to resort to the solutions of the models. Then it may
me1 n—1 alrfo 'beI%ossigIe to relgn_éo, S,, Ce, andS; to yet other
mn physical boundary conditions.

X2 pl;[o ql;[o cosh(2a)cost(2b) Investigation of FSS focC,, S,, andC, is beyond the
scope of this paper. Let us state, however, one interesting
o prsinr(Za) result that can be read off immediately from Eg§4). If a

m =b and we definez=sinh 23, the zerosz,, of C, in the
complex plane are given (g, = exp(a,y) with

1/ (2p+)7m  (2q+1)mw
Qpg™= arcco E COS + CoSs
n

2q7T 1/2
—cosTsinr(Zb)} . (37

, (40

While these expressions involve a double product instead of

just a single product as in Eq$24)—(27), they have the and the zero nearest to the real axes is foundpfeiq=0.

advantage that, andS, are symmetric under the exchange For m=n, this zero scales as

(a,m)«<(b,n) and that the only asymmetry &, and S,

under this exchange originates in the boundary conditions ™

and not in the mathematical treatment. @00~y (42)
While Wu et al. [4] use the Grassmannian integral ap-

proach to map the problem onto a free fermion system, thavithout any corrections as opposed to the case of BK bound-

method employed in this work is close in spirit to Kaufman’s ary conditions[6,7]. It remains to be investigated if simpli-

solution [2], but avoiding some complications encounteredfications may also be achieved for the FSS of other quantities

there, as detailed ifl]. While the Grassmannian method and if simplifying combinations of partition functions can

may be viewed as more elegant, our method is accessible atso be defined for models whose exact solution is unavail-

a less sophisticated mathematical level. It is also interestingble, e.g., by the use of symmetry arguments.
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